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Abstract. A universal version of the Hamilton–Jacobi equation onR × TM arises from the
Liouville–Arnol’d theorem for a completely integrable system on a finite-dimensional manifold
M. We give necessary and sufficient conditions for such complete integrability to imply a canonical
separability of both this universal Hamilton–Jacobi equation and its traditional counterpart.
The geodesic case is particularly interesting. We show that these conditions also apply for
systems of second-order ordinary differential equations (contact flows) which are not Euler–
Lagrange. The Kerr metric, the Toda lattice and a completely integrable contact flow are given as
examples.

1. Introduction

The Hamilton–Jacobi equation needs no introduction: it provides a canonical way of
formulating and solving Hamiltonian/Lagrangian systems from relativity through classical
mechanics to quantum mechanics. The additive separability of this equation in many important
examples has been the key to its accessibility and to its ongoing interest for theoreticians. Our
paper is concerned with broadening this accessibility by producing an analogue of the equation
for arbitrary second-order ordinary differential equations (ODEs; that is, systems which are
not necessarily Euler–Lagrange). On the theoretical side we are interested in the relationship
between the complete integrability of a system (‘half the integrals in involution’) and the
additive separability of the Hamilton–Jacobi equation. In order to analyse this connection we
need to treat the equation from a phase space perspective.

In pursuing these two aims we state at the outset that we do not seek a method for solving
the Hamilton–Jacobi equation. Instead we assume complete integrability: these first integrals
may have been obtained via Noether’s theorem, physical arguments or some other good fortune.
Then we ask,a posteriori, whether those integrals determine a certain special separation of
the Hamilton–Jacobi equation. In effect, we are looking for a ‘super-integrabilty’ property of
a completely integrable system (whose utility we explain later).

The Toda lattice as an interesting example (amongst others). While this system is
completely integrable, the corresponding Hamilton–Jacobi equation is not separable in the
traditional sense [8, 17] and we show that it is not separable on phase space either. Indeed, the
former failure is a result of the latter one.

As we will show there are no obstructions to the formulation of Hamilton–Jacobi equations
for arbitrary second-order ordinary differential equations (SODEs). This should be contrasted
with the problem of phrasing such a system as a set of Euler–Lagrange equations. In general

† The authors thank Mike Crampin for his generous assistance with the definition of the Hamilton–Jacobi equation
and Willy Sarlet for his constructive criticisms.
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this cannot be done [5, 6], but the Hamilton–Jacobi equation requires only a contact form
(which exists in principle for any system of SODEs) and is therefore not limited to Euler–
Lagrange systems. Hence this paper is the natural extension of [11] on a similar generalization
of the Liouville–Arnol’d theorem to contact flows, and in fact the Hamilton–Jacobi equation
appeared during the proof of that theorem.

We proceed as follows.
Our first goal is to formulate our phase space Hamilton–Jacobi equation in the case of Euler–
Lagrange systems. This exploits the fact that many geometric features of SODEs are simpler
when treated on the evolution space,R × TM (M is the configuration space, the evolution
space is the Lagrangian equivalent of extended phase space).

We show that the existence of a complete solution of this lifted Hamilton–Jacobi equation
is equivalent to complete integrability of the original equations of motion (that is, where we
haven first integrals in involution with respect to the contact 2-form).

Then we discuss the separability of the Hamilton–Jacobi equation in the Euler–Lagrange
case in terms of coordinates forR × TM induced by the involutive integrals via Noether’s
theorem. Our main result in this second area is a theorem which gives necessary and
sufficient conditions on our generalized Hamilton–Jacobi equation to be fully separable in
these coordinates.

An important consequence of this type of separability is that the remaining first integrals
can be calculated directly without having to solve the Hamilton–Jacobi equation. This is the
computational significance of the paper.

We also show that if the usual form of the Hamilton–Jacobi equation is separable, then
so is our generalized version. However, the converse is not true unless we add the additional
condition that there existn projectable and commuting symmetries of the Cartan 2-form. This
result is the well known case ofn ignorable coordinates.

Next we turn to arbitrary systems of SODEs and show that the corresponding Hamilton–
Jacobi equation onR × TM is always fully separable in the coordinates induced by the
(appropriately generalized) Noether’s theorem. This result for SODEs is particularly important
if the original set of integrals arise from the application of the Noether’s theorem or some other
source and the conditions of our main theorem are satisfied, we obtain the remaining first
integrals without having to solve the Hamilton–Jacobi equation at all.

The guarantee of separability has an immediate consequence for Euler–Lagrange systems,
namely that there is a gauge in which the Hamilton–Jacobi equation onR × TM is fully
separable. We finish with some examples.

While we have attempted to make this paper self-contained, the reader may find reference
to our earlier, related paper [11] useful. We will be using standard tangent bundle techniques
(see, for example, Crampin and Pirani [3]) and we will use the framework of time-dependent,
regular, Lagrangian systems which may be found in Crampinet al [4] and Sarletet al [14].

There are a large number of modern treatments of the Hamilton–Jacobi equation; so
far as we are aware they are all based on the Hamiltonian formulation of the calculus of
variations. We mention the work of Woodhouse [18, 19] because it provided us with an
understanding of the separability problem, but more particularly because in [19] there is
a tantalizing argument showing that even the most rudimentary separability in the base
manifold coordinates guarantees the existence of linear and/or quadratic first integrals for
quadratic Hamiltonians. Our results indicate that this is not the case when the separable
coordinates are not coordinates for the base manifold, however an appropriate example
is not yet available. We also mention Marmoet al [9] which has a strongly geometric
flavour and a large reference section. However, we emphasize that our paper is concerned
with an evolution space treatment of the Hamilton–Jacobi equation, the separability of
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its solutions and their implication for the separability of the traditional Hamilton–Jacobi
equation.

2. Some preliminaries

We suppose thatM is some smooth,n-dimensional, second countable, Hausdorff manifold
with generic local coordinates(xa). Theevolution spaceis defined asE := R × TM, with
the projection onto the first factor being denoted byt : E→ R. Since all our results are local,
all closed forms will be assumed exact. We will regardE as a vector bundleτ : E→ R×M.
E has generic adapted coordinates(t, xa, ua) associated witht and(xa).

A system of second-order differential equations with local expression

ẍa = Fa(t, xb, ẋb) a = 1, . . . , n

is associated with a smooth vector field0 onE given in the same coordinates by

0 := ∂

∂t
+ ua

∂

∂xa
+ Fa

∂

∂ua
.

The integral curves onE of this vector field are the natural lifts of the solution curves of our
original system of equations.

A 0-basic form(or invariant formof Cartan [1]) is a formα onE which satisfies any one
of three equivalent conditions:

(a) α(0) = 0 and0 dα = 0.
(b) Lf0α = 0 for any smooth functionf onE.
(c) α is the pullback of a form from the quotient ofE by the action of0.

The closed,0-basic 1-forms are locally just the exterior derivatives of first integrals of0.
A symmetryof the differential equation is a local one-parameter Lie group action onE

which permutes the integral curves of0 and, by projection, the solution curves on the base
M (although this induced action will not, in general, be the flow of a vector field onM). If
an action is generated by a vector fieldX on E then it is a symmetry of0 if and only if
LX0 = λ0 for someλ ∈ C∞(E). We define atransverse field, [X], to be the equivalence
class of symmetries differing fromX by the addition of aC∞(E)-multiple of 0, that is, by
the addition of a trivial symmetry. As an example of selection from the equivalence class, we
could chooseX̂ ∈ [X] so thatX̂(t) = 0 by settingX̂ = X − X(t)0, with X any element of
[X]. This results in a one-to-one correspondence between transverse fields onE and vector
fields on the quotient ofE by the action of0 (becauseLX̂0 = 0).

When the symmetry group action onE is induced by one onR×M, the generator onE
is the prolongation,X(1), of the generatorX onR×M (see, for example, [4]).

When the differential equations are the Euler–Lagrange equations of some smooth, regular
Lagrangian functionL onE, we have a maximal rank 2-form, theCartan 2-formdθL, which
is the exterior derivative of theCartan1-form, θL. This has local expression

θL = L dt +
∂L

∂ua
(dxa − ua dt).

θL is just the pullback fromR × T ∗M to E of the Hamilton–Poincaré form,pa dqa − H dt ,
by the Legendre transformation. In this case0 is known as theEuler fieldof the Lagrangian
and it is completely determined by the conditions

0 dθL = 0 0(t) = 1.

The first of these expressions are the Euler–Lagrange equations and the second ensures that0

is that member of the kernel of dθL whose integral curves are parametrized by the values of
the time coordinate.
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On the other hand, the necessary and sufficient conditions for a given second-order
differential equation field,0, to be Euler–Lagrange are called theHelmholtz conditions
[5, 6, 11].

Now we turn to a discussion of symmetries in the Euler–Lagrange case. Suppose that we
have a regular, non-zero Lagrangian onE. (Given a regular Lagrangian, bounded below onE,
we can always add a constant so as to make it non-zero.) It is shown in proposition 1 of [11]
that symmetries of dθL are also symmetries of0 (but the converse is not true). The generators
of such symmetries satisfyLX dθL = 0 as do all other elements of their transverse field. It
will be important for us to consider those elementsX with θL(X) = 0 (proposition 1 of [11]
guarantees the existence of this element). Symmetries of dθL are calledCartansymmetries
and when they are generated by prolongations of vector fields onR × M they are called
Noethersymmetries. BecauseL is regular, dθL has maximal rank and the 2-form dθL provides
a bijectionX 7→ X dθL between those vector fields onE satisfyingLX dθL = 0, θL(X) = 0
and closed,0-basic 1-forms. This well known result is a special case of the Noether–Cartan
theorem (see [11] for a proof).

Theorem 2.1. (Noether–Cartan) The map[X] 7→ X dθL is a bijection of symmetries ofdθL
(that is,LX dθL = 0) to closed basic 1-forms for0.

We will restrict ourselves to the bijection2L : X 7→ X dθL between symmetries of dθL
with θL(X) = 0 and closed0-basic 1-forms. We can use this map to define involutive first
integrals in a natural way which corresponds to the Poisson bracket involution of Hamiltonian
mechanics: two smooth first integralsf, g onE with df ∧ dg 6= 0 onE are said to bein
involution with respect toL if dθL(Xf ,Xg) = 0. HereXf := 2−1

L (df ) andXg := 2−1
L (dg),

that is, for example,LXf dθL = 0, θL(Xf ) = 0 and df = Xf dθL. We remark that the map
(f, g) 7→ −dθL(Xf ,Xg) does not turnE into a Poisson manifold as it is only well defined on
first integrals. However, it does turn the quotient ofE by 0 into a symplectic manifold.

The important properties of involutive first integrals are given in the following propositions
from [11]:

Proposition 2.2. The following conditions are equivalent:

(a) f andg are involutive first integrals with respect toL,

(b) Xf (g) = 0= Xg(f ),
(c) [Xf ,Xg] = 0.

This result shows that each such involutive pair produces a Lagrangian submanifold of
dθL of dimension 3 whose tangent spaces are spanned byXf , Yg and0.

Proposition 2.3. If f andg are involutive first integrals and ifYf ∈ [Xf ] andYg ∈ [Xg] are
defined by

Yf := Xf −Xf (t)0 and Yg := Xg −Xg(t)0
then

[Yf , Yg] = 0.

We can now define a Lagrangian system to becompletely integrable with respect toL if
there existn first integralsf a with df 1 ∧ . . . ∧ df n 6= 0 which are in involution with respect
toL.
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3. The Hamilton–Jacobi equation

To define the Hamilton–Jacobi equation from the Lagrangian point of view, suppose that we
have a LagrangianL onE, with Cartan formθL. If we considerE as a vector bundle over
R×M then a sectionσ of E→ R×M defines a Lagrangian submanifold of dθL (that is, its
image is a Lagrangian submanifold of dθL) if

σ ∗ dθL = 0.

If σ defines a Lagrangian submanifold then locally there is a functionS onR×M such that

σ ∗θL = dS.

Putting this in coordinates(t, xa, ua) we find that
∂S

∂xa
= σ ∗(∂L/∂ua) = σ ∗pa

wherepa is theath momentum function (but considered as a function onE) and
∂S

∂t
= σ ∗(L− ua∂L/∂ua) = −σ ∗H

whereH is the Hamiltonian (but considered as a function onE).
These two equations show thatS is a solution of the Hamilton–Jacobi equation. Thus

every section ofE → R ×M which defines a Lagrangian submanifold determines a (local)
solution of the Hamilton–Jacobi equation.

Conversely, letS be a function onR×M, andS̃ its total derivative (a function onE):

S̃ = ∂S

∂t
+ ua

∂S

∂xa
.

Consider the functionL− S̃, and the subset ofE on which
∂

∂ua
(L− S̃) = 0.

This amounts to∂S/∂xa = ∂L/∂ua, which may be regarded as an implicit equation forua in
terms ofxa andt . If it is assumed thatL is regular then the equation can be solved locally, so
determining a local sectionσ of E → R ×M. If, in addition,∂S/∂t + σ ∗H = 0, thenS is
a solution of the Hamilton–Jacobi equation. It follows from this thatσ defines a Lagrangian
submanifold ofE with respect to dθL.

Notice that the pair∂S/∂xa = ∂L/∂ua, ∂S/∂t+σ ∗H = 0 can also be written asL−S̃ = 0,
∂
∂ua
(L − S̃) = 0. Thus the construction above gives another interpretation of the Hamilton–

Jacobi equation: it determines those functionsS onE such that the zeros of the functionL− S̃
are extrema with respect to variations along the fibres ofE→ R×M.

3.1. Complete solutions of the Hamilton–Jacobi equation

We will now show that acompletesolution (definition 3.1 to follow) of the Hamilton–Jacobi
equation amounts to a smooth family of such sections whose images foliateE, giving rise to
a solution onE rather than onR×M.

To this end, considern (local) first integralsha, not necessarily in involution, with
dh1 ∧ . . . ∧ dhn 6= 0 and set

Ec := {v ∈ E : ha(v) = ca, a = 1, . . . , n}.
LetD denote the(n + 1)-dimensional integrable distribution whose integral manifolds are the
Ec, while σc is the section ofτ : E → R×M whose image isEc. The foliated derivative is
just the restriction ofd to the distributionD (see [11]).
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Definition 3.1. A pair ({h1, . . . , hn},G) or equivalently(D,G) to be acomplete solutionof
the Hamilton–Jacobi equation (onE) if it satisfies

dDG = θL.
This choice of definition is made for the following reasons: a submanifoldEc is a solution

of the Hamilton–Jacobi equation if it is Lagrangian for dθL. From proposition 2.2 this is so
precisely when the integrals are involutive, that is,

dθL(Xha , Xhb) = 0 ⇐⇒ σ ∗c dθL = 0

and so

σ ∗c θL = dSc

for local functionsSc onR×M. We generalize this by looking for a functionG onE which
pulls back byσc to each particular solutionSc, that is,

Sc := σ ∗c G.
It is sufficient to consider dDG becauseθL has no dha components in local coordinates
(t̄ , x̄a, ha) onE obtained from(t, xa, ua) by locally inverting the expressions for theha in
terms of theua.

Conversely, it was shown in [11] that complete integrability (that is, the involutivity of
ha) implies the existence of a solution to the equation dDG = θL so that the local functionsSc
guarantee the existence of a local functionG onE such thatσ ∗c G = Sc.

In the coordinates(t̄ , x̄a, ha) the Hamilton–Jacobi equation onE becomes

L dt +
∂L

∂ua
(dx̄a − ua dt̄ ) = 0(G) dt̄ +

∂G

∂x̄a
(dx̄a − ua dt̄ )

where theua are of course functions oft, xa and the values of theha on each leaf. In the
(t̄ , x̄a, ha) coordinates we have

0 = ∂

∂t̄
+ ua

∂

∂x̄a

and the equations

0(G) = L ∂G

∂x̄a
= ∂L

∂ua

give the previous Hamilton–Jacobi equations (onR×M) when pulled back by any one of the
sectionsσc corresponding to the leaves.

Thus finding a solution(D,G)means finding a complete solution of the Hamilton–Jacobi
equation in the traditional sense. In this way we achieve our goal of connecting the traditional
idea of a complete solution of the Hamilton–Jacobi equation with a solution of an equation on
the leaves of a foliation ofE.

As indicated above the proof given in [11] of the Liouville–Arnol’d theorem shows that
complete integrability guarantees a complete solution of the Hamilton–Jacobi equation. We
will now show that the converse is also true.

Proposition 3.2. The existence of a complete solution of the Hamilton–Jacobi equation onE

guarantees complete integrability.

Proof. LetG be a complete solution of the Hamilton–Jacobi equation, so that dDG = θL and
hence dDθL = 0. We need to show thatσ ∗c dθL = 0. However, since the restriction ofD to
Ec is just the tangent bundle of the image ofσc in E, σ ∗c dθL = σ ∗c dDθL = 0. �

From now on we will assume that our system is completely integrable with respect toL

and that then first integralsf a are in involution.
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3.2.R× TM separability

It will be useful to adopt a notation for declaring functional dependency. LetK be a function
onE with local coordinates(t, xa, ua) thenK[t, ua] will be used in place ofK to indicate
that the coordinate representation ofK does not depend on the functionsxa. It will also be
useful to have some generic coordinates(z0, za, f a) for E adapted to the level sets of thef a.
In general, the mapsz0 andza will not simply be composites of the mapst, xa but will also
involve thef a (and hence theua).

Definition 3.3 (Separability). A complete solutionG of the Hamilton–Jacobi equation is
separablewith respect to coordinates(z0, za, f a) if there exist non-zero functionsG0 . . . Gn

such that

G[z0, za, f a] = G0[z0, f a] + · · · +Gn[z
n, f a].

A complete solutionG of the Hamilton–Jacobi equation isfully separablewith respect to
coordinates(z0, za, f a) if it is separable and

G[z0, za, f a] = G0[z0, f a] − f bzb.
(We use the summation convention on terms likef bzb even though the indices are irregularly
placed.)

Remark. The idea behind full separability is to mimic the best possible situation with
conventional separability where there aren ignorable coordinates. In that case the coefficients
off b are just the ignorable coordinates themselves. The following lemma shows that something
quite startling happens when we try full separability of this type and indicates that when fully
separable coordinates can be found the second set of involutive integrals from the Liouville–
Arnol’d theorem appear as the natural extension of ignorable coordinates (see also corollary 3.6
following the main theorem and section 3.3). It illustrates the simplicity of the tangent bundle
description of the Hamilton–Jacobi equation.

Lemma 3.4. If the Hamilton–Jacobi equation admits a solution of the form

G[z0, za, f a] = Ḡ0[z0, f a] − f bzb

then it also admits a solution of the form

G[z0, ya, f a] = G0[z0, f a] − f byb

in coordinates(z0, ya, f a) where0(G0) = L, and0(ya) = 0.

Proof. We assume that there exists a solution to the Hamilton–Jacobi equation of the form
G[z0, za, f a] = Ḡ0[z0, f a] − f bzb. We define(ya) by ya := za − (∂Ḡ0[z0, f b])/(∂f a),
and now from dya = −d

(
(∂Ḡ0[z0, f b])/(∂f a)

)
+ dza we see that dya ∧ df b 6= 0, and

dya ∧ dz0 6= 0, so that(z0, ya, f a) are independent coordinates. Changing coordinates from
(z0, za, f a) to (z0, ya, f a) allows us to defineG0 so that

G[z0, ya, f a] = Ḡ0[z0, f a] − f b
[
yb +

∂Ḡ0[z0, f a]

∂f b

]
= G0[z0, f a] − f byb.
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It remains to show that0(G0) = L and0(ya) = 0. Now dDG = θL by assumption so, in
coordinates(z0, ya, f a),

dG = θL +
∂G

∂f a
df a

⇒ dθL = −d

(
∂G

∂f a
df a

)
= −d

(
∂G

∂f a

)
∧ df a.

Because dθL has maximal rank

d

(
∂G

∂f 1

)
∧ . . . ∧ d

(
∂G

∂f n

)
∧ . . . ∧ df 1 ∧ . . . ∧ df n 6= 0

implying the linear independence of these 2n forms. Hence0 dθL = 0 and0(f a) = 0 imply
0((∂G[z0, zb, f b])/(∂f a)) = 0 and we have0(za) = (Ḡ0[z0, f b])/(∂f a) so that0(ya) = 0.
0(G) = L then gives0(G0) = L as required. �

The dt-free Cartan symmetries corresponding to a set of involutive first integrals commute
amongst themselves and with0, moreover they (along with0) form a basis for tangent spaces
of the common level sets of the first integrals. Consequently, thesen + 1 fields are coordinate
fields for the level sets. The obvious question then is whether or not these coordinates provide
separability for the corresponding Hamilton–Jacobi equation.

The answer is generally no (the two-dimensional Kepler problem is easily shown to be
a counter-example). The same observations can be made for theθL-free Cartan symmetries
and also they are all inappropriate for the task (θL annihilates these fields). However, as it
happens the appropriate coordinate fields, when they exist, are elements of the transverse fields
of Cartan symmetries of the involutive integrals.

For the sake of brevity we will writeXa := 2−1
L (df

a) for each of our involutive integrals
f a. We will write Ya for the dt-free elements of [Xa] described in proposition 2.3. In the
following theorem we look forWa ∈ [Xa] with Wa = Ya + αa0 so that, along with0, these
fields provide coordinate fields for coordinates(y0, ya) on the level sets of thef a in which
the solution of the Hamilton–Jacobi equation separates.

Theorem 3.5 (Hamilton–Jacobi separability).The Hamilton–Jacobi equation admits a
solution of the form

G[z0, za, f a] = Ḡ0[z0, f a] − f bzb
if and only if

0(αa) = 0

where theαa are defined byαaL := −f a − θL(Ya).

Proof. From the preceding lemma, we need only to prove that these conditions imply, and
are implied by, the existence of a solution to the Hamilton–Jacobi equation of the form:
G[y0, ya, f a] = G0[y0, f a] − f byb, where the coordinates satisfy the relations0(G0) = L,
0(ya) = 0(f a) = 0.

Proof of necessity. Assume a separable solutionG[y0, ya, f a] = G0[y0, f a] − f byb with
0(G0) = L and0(ya) = 0. Now in these coordinates we know that0 = 0(y0)∂/(∂y0) +
0(ya)∂/(∂ya) but0(ya) = 0 so without loss of generality we can write0(y0) = 1.
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We wish to show that∂
∂ya
∈ [Ya], that is, ∂

∂ya
− Ya = αa0, with αa satisfying the required

conditions.
We start with the Hamilton–Jacobi equationθL = dDG, and substitute in our separated

expression forG, giving us

θL = dDG0 − f a dya

= 0(G0)dy
0 − f a dya.

Now taking the Lie derivative of this with respect to the vector fields∂/(∂yb), gives:

L∂/(∂yb)θL = 0

⇒ L∂/(∂yb) dθL = 0

so that∂/(∂yb) is a Cartan symmetry.
In addition,

∂

∂yb
dθL = L∂/(∂yb)θL − d

(
θL

(
∂

∂yb

))
= 0 + df b

so that ∂
∂yb
∈ [Ya].

EvaluatingθL on ∂
∂ya
− Ya = αa0 gives−f a − θL(Ya) = αaL as required.

Next we prove0(αa) = 0. To accomplish this we take the Lie derivative of the relation
∂
∂ya
− Ya = αa0 by 0, written as ∂

∂y0 , giving[
∂

∂y0
, ∂/(∂ya)

]
− [0, Ya] = 0(αa)0.

Since
[
∂
∂y0 ,

∂
∂ya

] = 0 by assumption and [0, Ya] = 0 by definition of theYa, we obtain
0(αa) = 0.

Proof of sufficiency. Starting with the vector fieldsYa, 0, we introduce new fieldsWa, 0,
whereWa ∈ [Ya] defined byWa := Ya + αa0, and show that the conditions on theαa ’s
imply that0,Wa are coordinate fields of the coordinates of a fully separable solution to the
Hamilton–Jacobi equation.

We first require that there exist coordinates(y0, ya) forming a chart with thef a such that
0 = ∂

∂y0 andWa = ∂
∂ya

. Hence, we require [Wa, 0] = 0, and [Wa,Wb] = 0. Substituting the
relationWa = Ya + αa0 into these, we find

[Wa, 0] = [Ya + αa0, 0]

= [Ya, 0] + [αa0, 0]

= 0

as0(αa) = 0. Doing the same for the second condition is a little more complex,

[Wa,Wb] = [Ya, Yb] + Ya(αb)0 − Yb(αa)0 + αa0(αb)0 − αb0(αa)0
and since [Ya, Yb] = 0 and0(αa) = 0 by assumption, we obtain

[Wa,Wb] = (Ya(αb)− Yb(αa))0.
To show thatYa(αb)− Yb(αa) = 0 we use all the assumptions to obtainYa(αbL) = Yb(αaL)
(this is straightforward). Then use the Leibniz rule on this result to obtain

Yb(αa)L− Ya(αb)L = αbYa(L)− αaYb(L).
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Finally, useYa(L) = −αa0(L) to show that the right-hand side of the above equation is zero.
Hence [Wa,Wb] = 0.

Starting withWa := Ya + αa0, and substituting in the definition ofαa, we obtain

Wa = Ya +

(−f a − θL(Ya)
L

)
0.

EvaluatingθL on this and usingθL(0) = L gives

θL(Wa) = −f a.
As this is true fora = 1, . . . , n, we have

θL = θ0[y0, ya, f a] dy0 − f b dyb.

Now from θL = dDG, we obtain ∂G
∂ya
= −f a, which implies thatG takes the form

G = G0[y0, f a] − f byb as required. �

Corollary 3.6. If the Hamilton–Jacobi equation has a solution of the form

G[y0, ya, f a] = G0[y0, f a] − f byb
then there exists an equivalent solution of the form

Ĝ[y0, ya, f a] = Ĝ0[y0] − f byb.

Proof. A simple modification of the proof of lemma 3.4 gives0
(
∂G
∂f a

) = 0 in coordinates

(y0, ya, f a). Substituting in our expression forG, we have0
(
∂G0
∂f a

) = 0 since0(ya) = 0.

This gives(∂G0[y0, f b])/(∂f a) = H [f b]. Hence

G[y0, ya, f a] = Ĝ0[y0] + H̄ [f a] − f byb.
The Hamilton–Jacobi equation dDG = θL indicates that the term̄H [f a] is irrelevant so that

Ĝ[y0, ya, f a] := Ĝ0[y0] − f byb
is a solution as required. �

Remark.

(a) The computational significance of our separability theorem is this: suppose that the
conditions of the theorem apply, then theya can be very simply calculated from the
Wa and0. Thesen + 1 vector fields commute and so on the(n + 1)-dimensional level
setsEc the dDya can be constructed algebraically and hence the dya are known modulo
the df a. Finally, we integrate these 1-forms to obtain theya. A by-product is an explicit
representation ofG, but this is hardly important because we have the remaining first
integrals. This computation is particularly important when the original first integrals arise
through the Noether–Cartan theorem fromn commuting symmetries of dθL rather than
the Hamilton–Jacobi equation. See our third example for an explicit calculation.

(b) We pass on a significant comment made to us by Willy Sarlet. The proof of the main
theorem obscures the fact thatαa are chosen so that the elementWa := Ya + αa0
of [Xa] satisfiesLWa

θL = 0. (This follows fromαaL = −f a − θL(Ya) without the
further assumption that0(αa) = 0.) We then observe that the [Xa,Xb] = 0 implies that
[Ya, Yb] = 0 (see proposition 2.3) but that [Wa,Wb] 6= 0 unless we assume0(αa) = 0.
This is a curious feature of the transverse fields, [Xa] of completely integrable systems.
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(c) It may appear that the conditions of the main theorem are so strong as to be useless because
by satisfying them we straighten out the flow of0. We remind the reader that the initial
assumption of complete integrability amounts to the same thing because of the Liouville–
Arnol’d theorem. All we are doing is requiring that the Hamilton–Jacobi equation have an
additional structure which makes the construction of the remaining integrals independent
of the functionG. We also remark that the condition0(αa) = 0 is not terribly strong in
practice: in our examples theαa are usually constants and they certainly do not have to
satisfy any relation with thef a ’s or the complementary set of integrals.

The separability theorem takes on a simple form when the Lagrangian is itself a first
integral, in particular when it is a composite of the involutive integrals. The following corollary
shows that the Lagrangian is always a composite of the involutive integrals associated with a
fully separable solution. The proof is short and straightforward and can be found in [10].

Corollary 3.7 (Geodesic motion).Let 0 be the Euler field for geodesic motion on ann-
dimensional (pseudo-) Riemannian manifold(M, g) with LagrangianL := gabu

aub. If
{f 1, . . . , f n} are an involutive set with respect toL then the Hamilton–Jacobi equation is
fully separable with respect to this set if and only ifL is a composite of thef a ’s.

This result has broader applicability: suppose thatL is one of thef a ’s and that we pose
the question of separability with respect to the complementary involutive integrals, the∂G

∂f a
’s

(in the coordinates(y0, ya, f a) for example). BecauseL is certainly not a composite of these
complementary integrals the corollary tells us that the system is not separable with respect to
these involutive integrals. The principle here is that full separability is in general a function
of the involutive integrals appearing in a given complete solution of the Hamilton–Jacobi
equation. For this reason it is rather difficult to formulate results claiming full separability or
its absence based on the equations of motion alone.

3.3.R×M separability

Now we turn to the issue of full separability in coordinates forR×M. In this section we will
need local coordinates(x0, xa) forR×M which do not in general respect its product structure.
The associated coordinates forR × TM are (x̄0, x̄a, f a) where x̄0(t, x, u) := x0(t, x),
x̄a(t, x, u) := xa(t, x).

It should be clear from the earlier discussion that a fully separated solution

G[x̄0, x̄a, f a] = G0[x̄0, f a] − f bx̄b
onE produces fully separated solutionsSc := σ ∗c G becauseσ ∗c x̄

α = xα and conversely, the
existence of these separated solutionsSc guarantees the existence of a separated solutionG such
thatσ ∗c G = Sc. The contrapositive of lemma 3.4, with(z0, za, f a) replaced by(x̄0, x̄a, f a),

excludes anything other than isolated fully separated solutions onR×M if 0(αa) 6= 0.
There remains the issue of deciding when ‘upstairs’ separability implies ‘downstairs’

separability. As we will show this depends on the projectability underτ : E→ R×M of the
[Wa] of theorem 3.5. (A vector fieldZ onE is projectableif there exists a vector fieldX on
R×M such thatX(t,x) = τ∗(t,x,u)Z(t,x,u) for all (t, x, u) ∈ E and we writeX = τ∗Z.)

Theorem 3.8. If

G[x̄0, x̄a, f a] = G0[x̄0, f a] − f bx̄b
is a solution of the Hamilton–Jacobi equation, then∂

∂x̄a
is a projectable Cartan symmetry

belonging tof a and ∂f b

∂xa
= 0.
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Proof. Use d(dDG) = dθL to obtain

dθL = d

(
∂G0

∂x̄0

)
∧ dx̄0 − df b ∧ dx̄b

so thatL∂/∂x̄a dθL = 0. The projectability of the ∂
∂x̄a

can be seen by writing them as linear
combinations of the coordinate fields for the coordinates(x0, xa, ua) using

∂

∂xa
= ∂

∂x̄a
+
∂f b

∂xa

∂

∂f b
and

∂

∂ua
= ∂f b

∂ua

∂

∂f b
.

To see that∂f
b

∂xa
= 0, we use the fact that symmetries of dθL are symmetries of0. The fact that

∂
∂xa
= τ∗ ∂

∂x̄a
then forces ∂

∂xa
= ∂

∂x̄a
. �

Remark. It is a simple consequence of this theorem that the coordinatesxa of theorem 3.8
are ignorable, that is,∂L

∂xa
= 0.

Next we give a loose converse to this theorem, but first we remark that each transverse
field belonging to0 contains at most one projectable element and that projectable elements
belonging to distinct transverse fields do not generally commute.

Theorem 3.9.Let

G[y0, ya, f a] = G0[y0, f a] − f byb
be a solution of the Hamilton–Jacobi equation with0(y0) = 1 and0(ya) = 0. If each

[
∂
∂ya

]
contains a projectable element and thesen elements commute pairwise thenSc := σ ∗c G is a
fully separable solution ofdS = σ ∗θL for eachc on some open, connected subset ofRn.

Proof. LetZ1, . . . , Zn be the pairwise commuting, projectable (and necessarily independent)
fields and denote their projections byτ∗Za. It is straightforward to verify that we can introduce
local coordinates(x0, xn) for R ×M so thatτ∗Za are the coordinate fields corresponding to
thexa. In the usual induced local coordinates(x̄0, x̄a, f a) for E the fields ∂

∂x̄a
project to the

τ∗Za = ∂
∂xa

(see the proof of theorem 3.8). HenceZa − ∂
∂x̄a

is vertical for eacha. Since,
for eacha, both of these fields are tangent to the imagesσc(R ×M) for all c in some open,
connected subsetD of Rn, they must coincide.

Now we choose(y0, x̄a, f a) as local coordinates forE and we see that

yb = x̄b +Hb[y0, f a]

for some functionsHb. Applying this to the expression for our fully separated solutionG we
obtain

G[y0, x̄a, f a] = Ĝ0[y0, f a] − f bx̄b
and so

σ ∗c G = Ĝ0[σ ∗c y
0, ca] − cbxb

for eachc ∈ D. It only remains to show that d(σ ∗c y
0)∧dx1∧ . . .∧dxn 6= 0 so that (σ ∗c y

0, xa)

can be used as local coordinates forR×M. This is true becauseσ ∗c
(
dy0∧dx̄1∧ . . .∧dx̄n

) =
d(σ ∗c y

0) ∧ dx1 ∧ . . . ∧ dxn and because the pullback is one to one and onto. SinceG is a
solution of dDG = θL, Sc := σ ∗c G is a solution of the usual Hamilton–Jacobi equation for
eachc ∈ D. �

Remark. This last result is a little unsatisfactory because it involves a different base coordinate,
σ ∗c y

0, for eachc. Ideally one would like to show thatσk∗y0 depends only onσ ∗c y
0 andk for
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some fixedc ∈ D. However, the overall result of theorems 3.8 and 3.9 is that full separability
on the base occurs if and only if the conditions of theorem 3.5 hold and there aren commuting
Noether symmetries of dθL corresponding ton ignorable coordinates.

4. The Hamilton–Jacobi equation for contact flows

In general, a system of second-order differential equations will not be Euler–Lagrange.
However, it was shown in [11] that, at least locally, there exists a 2-form which serves exactly
the same purpose as dθL in the Euler–Lagrange case. This is because such equations guarantee
the local existence of acontact formonE. We will give a brief pŕecis of definitions and results
from [11].

A contact formon a(2n + 1)-dimensional manifoldP is a smooth 1-formω such that
ω ∧ (dω)n is nowhere zero. A contact form uniquely determines a vector fieldV , called the
Reeb field, on the manifold such thatω(V ) = 1 andLV ω = 0. It is apparent that an equivalent
pair of conditions isω(V ) = 1 andV ∈ ker dω. The flow ofV is called thecontact flowand
a manifold which admits a contact form is called acontact manifold.

It should be clear that any regular Lagrangian system provides a contact form forE by
virtue of the properties of dθL, namelyω := θL − dG + dt whereG satisfies0(G) = L. The
corresponding Reeb field is the Euler field0.

It is shown in [11] thateverysecond-order equation field0 has a contact form, called a
0-contact form, associated with it. For example, ifh1, . . . , h2n are functionally independent
first integrals on some domain thenω := h1 dh2 + · · ·+h2n−1 dh2n +dt is such a form. Explicit
construction of such forms cases usually requires some knowledge of first integrals (as in the
inverse problem in the calculus of variations).

Suppose that we have a (possibly local)0-contact formω on E for a second-order
differential equation field0. It is shown in [11] that the 2-form dω replaces dθL in the
definitions of Cartan fields, involutiveness and complete integrabilty. Proposition 2.2 holds
with df = Xf dω andω(Xf ) = 0 and similarly forXg. Proposition 2.3 also holds and we
will useYf to identify this element of [Xf ]. Indeed, the entire Liouville–Arnol’d theorem is
true for0-contact flows. The generalized Hamilton–Jacobi equation onE is

dDG = ω
where dD is as before (and a solution onR ×M satisfiesσ ∗ω = dS). It is a simple matter
to show that proposition 3.2 continues to hold so we will assume that this flow is completely
integrable and use involutive first integralsf a. In the coordinates(t̄ , x̄a, f a) this generalized
equation has components

0(G) = 1 and
∂G

∂x̄a
= ω

(
∂

∂x̄a

)
.

We will stick with our definitions from the previous sections of separable and fully
separable solutions. Lemma 3.4 stands with0(G0) = 1 replacing0(G0) = L. Theorem 3.5
becomes (withYa ∈ [Xa] as explained above):

Theorem 4.1.The generalized Hamilton–Jacobi equation always admits a solution of the
form

G[z0, za, f a] = Ḡ0[z0, f a] − f bzb.

Proof. The conditions of the previous theorem become

0(αa) = 0
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whereαa := −f a−ω(Ya). It is a simple matter to show that0(αa) = 0 is identically satisfied
for a completely integrable system. The proof of the result then proceeds as before: from
the generalization of lemma 3.4, we need only to prove that the existence of a solution to
the generalized Hamilton–Jacobi equation of the formG[y0, ya, f a] = G0[y0, f a] − f byb,
where the coordinates satisfy the relations0(y0) = 1, 0(ya) = 0 is equivalent to0(αa) = 0.

The proof of necessity is a simple modification of the one in the previous section. The proof
of sufficiency is simpler than before because the conditionθL(0) = L becomesω(0) = 1.
The remainder of the proof is as before. �

This result means that we can construct the remaining first integrals directly from the
symmetries themselves. See example 5.3 below. It also has implications for the Euler–
Lagrange equations: we are free to modify the Cartan 1-formθL by the addition of exact
1-forms, this is a type of gauge freedom. In particular, we can set

ω := θL − dG + dt

(and so dω = dθL). But thisω is a0-contact form, so in this gauge the Hamilton–Jacobi
equation is fully separable if the Euler–Lagrange system is completely integrable. Moreover,
in this gauge it is a simple matter to showαa := −f a − ω(Ya) = −(∂G)/(∂ya) whereya are
the separable coordinates of theorem 4.1: these are exactly the remaining first integrals given
by the Liouville–Arnol’d theorem!

5. Examples

Example 5.1 (The Toda lattice).The Toda lattice [8, 17] is a completely integrable system
that is not conventionally separable. The configuration space isR3 and the Lagrangian is

L := 1
2(u

12
+ u22

+ u32
)− (e(x1−x2) + e(x

2−x3) + e(x
3−x1)

)
.

We know three involutive first integrals with respect to this Lagrangian:

f 1 = u1 + u2 + u3

f 2 = u1u2u3− u1e(x
2−x3) − u2e(x

3−x1) − u3e(x
1−x2)

f 3 = 1
2(u

12
+ u22

+ u32
) + e(x

1−x2) + e(x
2−x3) + e(x

3−x1)

the last of these being the Hamiltonian. We will show that these first integrals do not give us
a fully separable solution to the Hamilton–Jacobi equation. Using the REDUCE [7] exterior
calculus package EXCALC [15], we found the followingdt-free Cartan symmetries related to
these first integrals:

Y1 = − ∂

∂x1
− ∂

∂x3
− ∂

∂x3

Y2 =
(
e(x

2−x3) − u2u3
) ∂
∂x1

+
(
e(x

3−x1) − u1u3
) ∂
∂x2

+
(
e(x

1−x2) − u1u2
) ∂
∂x3

+
(
u2e(x

3−x1) − u3e(x
1−x2)

) ∂
∂u1

+
(
u3e(x

1−x2) − u1e(x
2−x3)

) ∂
∂u2

+
(
u1e(x

2−x3) − u2e(x
3−x1)

) ∂
∂u3

Y3 = −e(x
1+x2+x3)

(
u1 ∂

∂x1
+ u2 ∂

∂x2
+ u3 ∂

∂x3

)
+
(
e(2x

1) − e(x
2+x3)

) ∂
∂u1

+
(
e(2x

2) − e(x
1+x3)

) ∂
∂u2

+
(
e(2x

3) − e(x
1+x2)

) ∂
∂u3

.
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From these symmetries and the first integrals, we used EXCALC to calculate the values ofα1,
α2, andα3:

α1 = 0

α2 = e(2x
1+x3)u3(u1− u2) + e(2x

2+x1)u1(u2 − u3) + e(2x
3+x2)u2(u3− u1)

e(2x1+x3)(u1− u2) + e(2x2+x1)(u2 − u3) + e(2x3+x2)(u3− u1)

α3 = −1.

We find0(α1) = 0, and0(α3) = 0, but0(α2) 6= 0. So these first integrals do not produce a fully
separable coordinate system for the Hamilton–Jacobi equation at either level. Unfortunately,
currently we do not know whether there exists a different set of involutive first integrals which
would give us a separable solution.

Example 5.2 (The Kerr metric). This example is treated in full in [10], we restrict ourselves
to a summary. The geodesic equations of the Kerr metric are completely integrable, the
responsible involutive integrals are

f 1 := 1
2gabu

aub f 2 := −g0au
a

f 3 := −g3au
a f 4 := 1

2Kabu
aub.

f 1 is just the geodesic LagrangianL andK is Carter’s Killing tensor [2]. The corresponding
dt-free Cartan symmetries (see [12, 13]) are

Y1 = ∂

∂s
− 0 Y2 = ∂

∂t

Y3 = ∂

∂φ
Y4 = −Kb

au
a ∂

∂xb
− 0(Kb

au
a)

∂

∂ub
.

We can immediately apply corollary 3.7 and say that the system is separable with respect
to this involutive set becausef 1 := L. It is a straightforward matter to show that the
correspondingα’s are

α1 = 1 α2 = 0 α3 = 0 α4 = f 4

L

(which are indeed all constant along the integral curves of0) so that the separable coordinate
fields for the level sets of thef ’s are

0 W1 := ∂

∂s
W2 := ∂

∂t
W3 := ∂

∂φ
W4 := Y4 +

f 4

L
0

in the coordinate basis for(s, xa, ua). It is clear that the associated coordinates are not adapted
toR×TM and full separability is not achievable with coordinates fromR×M because[W4] has
no projectable element, although Carter [2] shows that ordinary separability is possible. This
is an example where downstairs full separability is not guaranteed byn quadratic integrals.
From the point of view of this paper the Kerr metric is important because it provides an example
of an upstairs fully separable system with0(L) = 0with no full separability downstairs which,
in addition, has a hidden symmetry.

Example 5.3 (A contact flow onR2). Consider

ẍ = ẏ ÿ = y.
This system is not Euler–Lagrange [6], however, it produces a contact flow: for example, for
the0-contact form

ω := (u− y)θx + 1
2xθ

y + (v − x)ψx + ( 1
2y − u)ψy + dt
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in coordinates(t, x, y, u, v) forE := R×TR2. The formsθx := dx−u dt , θy := dy−v dt ,
modified force formsψx := − 1

2(dy+v dt)+du andψy := dv−y dt , anddt , form a convenient
basis forT ∗E (see [4]) because in this basisdω is free ofdt terms:

dω = θx ∧ θy + 2ψx ∧ θx − 2ψx ∧ ψy.

The system has two obvious commuting (point) symmetries generated by∂
∂t

and ∂
∂x

(regarded as vector fields onE). L∂/∂t dω = 0 = L∂/∂x dω so that∂/(∂t) dω and ∂
∂x

dω
produce involutary first integrals, namelyf := u2 + 1

2(y
2 + v2) − 2uy andg := 2(y − u),

respectively. UsingYf := ∂
∂t
− 0 andYg := ∂

∂x
a straightforward calculation shows that

αf = 0 αg = − 1
2g.

The generalized Hamilton–Jacobi equation is fully separable according to theorem 4.1 with
coordinate fields

Wf := Yf + αf 0 = −U ∂

∂x̄
− V ∂

∂ȳ

Wg := Yg + αg0 = −1

2
g
∂

∂t̄
+
(
1− 1

2gU
) ∂
∂x̄
− 1

2
gV

∂

∂ȳ

0 = ∂

∂t̄
+U

∂

∂x̄
+ V

∂

∂ȳ

in coordinates(t̄ , x̄, ȳ, f, g) and whereU,V are composites of these functions obtained by
locally solving the expressions forf, g for u, v, respectively (in this way we hide any branches
involved). Now we wish to find the corresponding coordinate functions, which we denoter, s

(equivalently− ∂G
∂f
,− ∂G

∂g
, respectively), without findingG. PuttingD := Sp{0,Wf ,Wg} we

construct the following2-form fromD∗ whose characteristic space inD is spanned by0:

� := (dx̄ − U dt̄ ) ∧ (dȳ − V dt̄ ).

The1-forms

ωg := Wf �

�(Wf ,Wg)
and ωf := Wg �

�(Wg,Wf )

are bothD-closed and satisfy

ωa(0) = 0 ωa(Wb) = δab.
(See [16] for details of this technique.)

It remains to integrate these two forms modulof, g to findr, s.
The coordinate expressions are

ωg = V dx̄ − U dȳ

V
ωf = −dȳ − V dt̄

V
.

Using the facts thatdDU = dȳ andV dDV − ȳ dȳ = 0 we obtain

r = t − log(|y + v|) and s = x − v − (u− y) log(|y + v|)
in the original coordinates(t, x, y, f, g) (up to arbitrary composites off, g).

This indicates that there is a separable solution (although not the one of theorem 4.1)
corresponding to the ignorable coordinatest andx:

G[ t̄ , x̄, ȳ, f, g] = − 1
2gx̄ + (1− f )t̄ + F [ȳ, f, g]

whereF [ȳ, f, g] is a tedious composite off, g and ȳ. Notice that

Sc[t, x, y] := σ ∗c (G[ t̄ , x̄, ȳ, f, g]) = − 1
2c

1x + (1− c2)t +H [y]



A universal Hamilton–Jacobi equation for second-order ODEs 843

is the pullback ofG associated with the sectionσc of E → R × M whose image is
Ec := {v ∈ E : g(v) = c1, f (v) = c2}. We see in this case that full separability of
the Hamilton–Jacobi equation occurs both onR×M and onE. This example demonstrates
that the applicability of the Hamilton–Jacobi method extends beyond Lagrangian/Hamiltonian
systems. On the other hand, it can be regarded as an example where the Hamilton–Jacobi
equation is never solved but merely serves as a construct by which four integrals are obtained
from two symmetries.

6. Conclusion

It should be clear that in the case of completely integrable systems that separability of the
Hamilton–Jacobi equation is quite straightforward (and satisfactory in as much as it is closely
linked to the Noether–Cartan treatment of first integrals) when approached onE. Furthermore,
it yields powerful results about whether a given set of involutive integrals are sufficient to
guarantee full separability of the usualR×M Hamilton–Jacobi equation.

We cannot yet relate our results to the well known ones on orthogonal separability
and Killing tensors, and certainly Woodhouse’s result on separability on one variable does
not require anything so strong as complete integrability. On the positive side, we have
generalized the Hamilton–Jacobi method to arbitrary systems of second-order ordinary
differential equations and, along with paper on the Liouville–Arnol’d theorem, the current
work once more shows how much useful structure can be transferred to the case of systems
without a Lagrangian.
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